
©2013

Continous Delivery:
What I t Is and How to Get Star ted

Table of Contents

Introduction ...3

Chapter 1. What Is Continuous Delivery? ...4

Chapter 2. Why Continuous Delivery Matters ...8

Chapter 3. The Practice of Continuous Delivery ..12

Chapter 4. The Tools of Continuous Delivery ...16

Summing Up Continuous Delivery .. 22

Puppet Enterprise: Automate and Make Your Life Better. ..24

Appendix: Resources for Continuous Delivery ...25

2Share this ebook©2013

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

3Share this ebook©2013

Introduction

Twenty years into the cultural revolution started by the web, there's still
something magical about the way an application written by a few developers
and delivered by a handful of sysadmins can delight millions of people.

Whether it's a search engine powered by sophisticated algorithms and dozens
of data centers, or a deceptively simple to-do app that nails the essence
of staying organized, software matters to people in ways that can still surprise
anyone who remembers sitting in front of an 8-bit computer and pecking
in the BASIC for a checkbook program or feeding FORTRAN punch cards into
a warehouse inventory system.

It would be nice to believe that we — developers, sysadmins and managers —
are somehow keeping up, delighting our customers with the things they need
and want.

You only have to read the support forums or app store reviews to know
that's not true:

“Great app, but I can only give it three stars until the developers
add ...”

“I loved this and told all my friends to use it, but it hasn't been
updated in months!”

“This used to be the best, but it really fell behind and now I use ...”

Industry headlines tell us every day that companies rise and fall on moments
of infectious delight and irritated disappointment. It's not enough to have
a great idea and execute on it once. You have to execute, get feedback, refine,
and execute again - and again and again. To keep competitors from grabbing
a piece of your market, you need to cycle with ever-increasing speed and agility.

Continuous delivery is about this cycling process. This ebook explains:

What continuous delivery is (and isn't)
How important continuous delivery is to your business
How to get started with the cultural and technological changes required
to practice continuous delivery

We hope you'll enjoy it.

”“The most brilliant idea, with no
execution, is worth $20.

 Derek Sivers, founder of online

independent music store CD Baby

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

4Share this ebook©2013

Chapter 1

WHAT IS
CONTINUOUS
DELIVERY?

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

5Share this ebook©2013

Chapter 1

What Is Continuous Delivery?

There’s plenty of confusion as to what continuous delivery actually is.
Arguably, Martin Fowler has offered the best definition. (See the sidebar.)

Fowler’s definition is based on the idea that software is created to fill
a business need, and that it must be delivered more frequently and reliably
so customers — whether they are internal or external — can start getting its
benefits. For a company that ships software, or that depends on software
to deliver its products or services, faster delivery of working software is critical
to becoming or staying competitive.

The problem is, trying to speed software cycles through traditional waterfall
development techniques usually results in late, buggy software. In fact, most
developers and IT professionals know this, and are justifiably leery of speeding
things up. With traditional methods, they simply aren’t equipped to test software
frequently or thoroughly enough to release high-quality code.

Continuous delivery works because it incorporates automation, frequent code
releases, testing at every stage of the process, and a pull-based architecture that
permits only successful releases to move to the next stage. All of these reduce
errors and make it easier to improve the software delivery process.

Automation allows you to make successful processes repeatable. When you
decide to introduce a new feature, make a change to a service underlying your
system or an adjustment to your infrastructure, automation lets you make the
change quickly and safely, without introducing the human errors that would
result from repeating a process manually.

Releasing code frequently, rather than the traditional model of shipping big
releases once or twice a year, means you’re testing more often against existing
code and systems. There’s less change in each release, so it’s easier to isolate
and fix problems. It’s also easier to roll back when needed.

Automated testing enables you to catch errors early in the process and
pull-based architecture prevents you from inadvertently passing code that fails
automated tests to the next stage of development. This prevents compounding
errors and making them harder to diagnose.

Continuous Delivery
According to Martin Fowler

You’re doing continuous delivery when:
Your software is deployable throughout
its lifecycle
Your team prioritizes keeping the
software deployable over working
on new features
Anybody can get fast, automated
feedback on the production readiness
of their systems any time somebody makes
a change to them
You can perform push-button deployments
of any version of the software to any
environment on demand

More from Martin Fowler on continuous delivery

http://martinfowler.com/bliki/ContinuousDelivery.html
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

6Share this ebook©2013

Continuous delivery also works because teams share responsibility for the
process, putting an end to siloed teams handing work off to each other and
then walking away. Because you’re working together as a single team made up
of people with different skills and responsibilities, errors and issues become an
opportunity to collaborate on improving the process — not an excuse to blame
someone else.

Continuous Delivery Builds on Agile Pract ices

Continuous delivery is the natural outgrowth of the Agile movement. Agile seeks
to correct the problem of late, large, buggy software releases by promoting
iterative, incremental changes to code, and collaboration between teams. Agile’s
benefits include the ability to adapt quickly to change and lower risk to the
business.

Continuous Delivery Requires a Cultural Shift

Continuous delivery is a set of practices enabled by a toolset. It’s also a shift in
how people think about delivering software, and a shift in work culture. Instead
of delivering software every six months to a year, and spending long periods of
time fixing the things the software breaks, teams deliver smaller code changes
more frequently, so smaller problems can be fixed more quickly. Instead of
developers crafting code and then tossing it over the metaphorical wall to IT
operations to deploy, teams agree that creating, testing and deploying quality
code is a shared responsibility: that everyone is on the same team, and that the
goals of the business are shared goals.

Continuous Integrat ion Is Par t
of Continuous Delivery

One frequent confusion is equating continuous delivery and continuous
integration. Continuous integration is the practice of integrating and testing
new code against the existing code base with every change, and it’s a necessary
part of the continuous delivery process. Tools for continuous integration are
discussed later in the chapter, “The Tools of Continuous Delivery.”

”

”
“
“

You can’t achieve really high levels of
quality and verifiability in my experience by
throwing things over the wall. The teams
need to be working very, very closely together,
communicating on a daily basis, interacting
on tasks. So cross-functional teams all
focused on delivering high quality software
is the way to go.

Dave Farley talking to Peter Bell of InfoQ

Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

First Principle, Agile Manifesto, 2001

http://www.infoq.com/interviews/farley-continuous-delivery
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

7Share this ebook©2013

Puppet Module
Unit Tests

Puppet Module
Unit Tests

Platform
Tests

Platform
Tests

Deliver To
Staging

Deliver To
Staging

Application
Acceptance Tests

Application
Acceptance Tests

Deploy
To Production

Deploy
To Production

Manual Auto

Auto

Auto

Auto Auto

Auto

Auto

Auto

Auto

Post
Deploy Tests

Post
Deploy Tests

Continuous Delivery

Continuous Deployment

Continuous Delivery Is Not the Same
As Continuous Deployment

People sometimes use the terms continuous delivery and continuous
deployment interchangeably. They are not the same thing. Where continuous
delivery is a set of practices that ensure code can be deployed to production
at any time, continuous deployment takes it one step further by automatically
deploying code that has successfully passed through the testing stage.

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

8Share this ebook©2013

Chapter 2

WHY
CONTINUOUS
DELIVERY
MATTERS

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

9Share this ebook©2013

Chapter 2

Why Continuous Delivery Matters

Companies that depend on software turn to continuous delivery to get better
quality code released quicker, and more dependably. But different people have
different reasons for wanting it. Here’s a quick rundown of continuous
delivery’s importance to systems administrators, software developers and
business managers.

Why Does Continuous Delivery Matter to Sysadmins?

System administrators are rewarded for keeping the IT infrastructure running
reliably to serve business needs. That means limiting the impact of any changes.
That conflicts with the needs of software developers, who are rewarded for
delivering new code — which means making lots of changes that can bring
systems down.

Continuous delivery practices help sysadmins keep things running smoothly
while giving software developers the ability to test code in an environment that
closely resembles production conditions.

Automated configuration — an important part of continuous delivery — makes
it possible for sysadmins to provide developers with the ability to turn on their
own testing environments. Developers don’t have to wait for weeks to test their
code and use the results to move on, so they don’t see sysadmins as standing
in their way.

Deployment becomes much less stressful, too. Again, configuration management
lets you make sure the development, testing and production environments are
closely matched, so any errors that new code could cause in production are
discovered — and corrected — long before deployment.

Practicing continuous delivery permits much more flexibility to experiment
and learn from those experiments, in a low-risk way. IT operations people who
enable that flexibility are providing real value to the business.

”“Our job as engineers (and ops, devops,
QA, support, everyone in the company
actually) is to enable the business goals.

Erik Kastner on CodeAsCraft.com

http://codeascraft.com/
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

10Share this ebook©2013

Why Does Continuous Delivery Matter to Developers?

Software developers are rewarded for delivering quality software that addresses
business needs, on schedule. That’s where the conflict often arises between
developers and sysadmins: Developers want to release code to production,
and sysadmins worry about that code breaking the systems they manage.
Developers also want test environments when they need them, and if they’re
stuck filing requests that take weeks to fulfill, their work is slowed down.

Continuous delivery practices give software developers the ability to provision
themselves with production-like stacks and push-button deployment so they
can run automated tests. Instead of standing in their way, the ops team helps
developers get their work done.

Continuous delivery depends on continuous integration, which means every
change is merged into and tested against the main code base, reducing the
opportunity for long-standing feature branches and large merge windows
that can lead to serious errors. Deployment becomes much less stressful when
changes are small and tested at every step. And if you need to, it’s easier to roll
back changes to your code, changes to the environment, or more importantly,
both together.

Practicing continuous delivery permits much more flexibility to experiment
and learn from each experiment, in a low-risk way. Creating software in these
conditions is less stressful, which makes it easier for developers to work
creatively and productively, and deliver higher quality code, more frequently,
to meet business goals.

Why Does Continuous Delivery Matter
to the Business?

You’ll face lower risk from deployments. Continuous delivery, once processes
are in place and regularly used, gives you the option of much faster software
development cycles. Instead of releasing code once or twice a year, companies
have the option of releasing multiple times per day. When you’re releasing
at that rate, each release is small — maybe only a single line of code — so the
risk to system stability and customer service is much lower. Every change is
easier to roll back, easier to test — and if there’s a failure, easier to diagnose,
because so little was actually changed.

A company still may not want to release new code as frequently as multiple
times per day, but what really matters is that every piece of code that’s checked
in is ready to deploy.

”“Until your code is in production making
money or doing what it is meant to do,
you have simply wasted your time.

Chris Read, quoted on Jamie’s Blog

http://jamiei.com/blog/2011/06/delivering-software-continuously-and-why-you-should/
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

11Share this ebook©2013

”
“

This makes it much more viable to continually test small changes on your
systems and on your customers. For example, you might want to see if a big
blue “buy now” button on the home page makes people act more quickly than
your existing green button. With continuous delivery practices in place, you can
test that change to see if it breaks anything before rolling it out. And you can
limit the change to just a small percentage of website visitors to see how they
respond, or see if visitors arriving at various times of day, or on different days
of the week, react any differently. The feedback from these experiments helps
business managers make better decisions.

You’ll be able to respond to the market more quickly. Markets change all the
time: Regulations get modified, commodity prices go up and down, safety
warnings go out, celebrities launch fads. With faster cycle times, you can respond
much more quickly to those changes.

Something you thought was profitable may turn out to be a loser. Website
analytics may show that people visiting your site on mobile devices are buying
more than those using desktop computers. Whatever decision you need to make,
you can implement it faster if you’re already practicing continuous delivery.

Once the whole organization gets comfortable with making more changes
more often, you’ll have a distinct edge over competitors whose deployments are
infrequent, chaotic and error-prone. And the more you practice frequent code
release, the better you get at it.

You’ll have happier, more productive people. Workplace satisfaction matters.
There are just too many options out there for talented technology people; they
don’t have to stick around if they’re getting burned out. Continuous delivery
is known to reduce stress on technical teams, ending the 2:00 AM pager calls
and reducing the last-minute technical fixes that themselves add to technical
debt, and slow future releases.

Continuous delivery also fixes another source of developer dissatisfaction:
writing code that never gets released. It’s not at all uncommon for blocked
development pipelines to swallow code forever, and no developer likes working
on a product that no one ever gets to use.

Bonus: When there’s less stress, there’s more room to be creative. Technical
teams who aren’t fighting fires and fixing bugs all the time have the bandwidth
to innovate in ways that benefit the business.

It’s virtually impossible for us to
practice continuous improvement, to
learn how to get better as teams or
as individuals, and to acquire the skills
that enable the successful creation of
great products and services – unless
we focus on getting that feedback loop
as short as possible so we can actually
detect correlations, and discern cause
and effect.

Jez Humble,

Why Software Development Methodologies Suck

http://agile.dzone.com/articles/jez-humble-why-software
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

12Share this ebook©2013

Chapter 3

THE
PRACTICE OF
CONTINUOUS
DELIVERY

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

13Share this ebook©2013

Chapter 3

The Pract ice of Continuous Delivery

Continuous delivery is, for many people, a kind of ideal, something that many
people believe can be achieved only by small startups, or conversely, only
by large resource-rich enterprise companies. In fact, all kinds and sizes of
companies are implementing practices that are part of continuous delivery —
and realizing great benefits, even if they don’t implement it all.

Where Is Continuous Delivery Pract iced Today?

Continuous deployment is the ultimate version of continuous delivery, in which
every change that makes it through automated tests is automatically deployed
to production. Most experts will tell you this is not practiced by many companies.

More do eventually arrive at continuous delivery, but it can take a year or more
of diligent and committed effort to transition from traditional waterfall software
development and release practices to continuous delivery. Many companies
benefit from implementing even one or two continuous delivery practices.
Frankly, you don’t have to do it all to create code with fewer bugs and improve
your release cycle time.

Early leaders in this practice were (naturally enough) companies whose
products and services are actually software. Other leading-edge adopters are
sophisticated technology companies that work in the software space, such
as GitHub. Continuous delivery has also been adopted by companies whose
businesses are dependent on large-scale web operations. A few well-known
examples of these are Etsy, the online marketplace for small craft businesses;
Netflix, which streams its videos from Amazon’s cloud infrastructure; and of
course, Amazon itself.

But companies that aren’t your typical website-based businesses are also
turning to continuous delivery to speed up delivery of high-quality software that
helps them deliver their products and services. A quick dive into large job boards
shows a variety of companies hiring to put continuous delivery into practice,
including manufacturing conglomerate GM; payroll and auto dealer services
company ADP; aircraft autopilot device manufacturer Airware; UK fundraising
company JustGiving; Pennsylvania State University; recruitment advertising
agency TMP Worldwide; and a host of others in various industries.

Organizations that commit to continuous delivery see impressive improvements
in their release cycles. AOL, for example, went from six-hour deployment cycles
to 45 minutes, according to Gene Kim, DevOps proponent and author of The
Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win.

The Phoenix Project
A Novel About IT, DevOps, and
Helping Your Business Win

Gene Kim’s The Phoenix Project is a funny and
realistic depiction of a normal dysfunctional
company and IT environment, and does a good
job of describing how to transition to a high-
functioning and strategic IT team.

http://puppetlabs.com/blog/devops-solves-business-problems-gene-kims-top-aha-moments
http://puppetlabs.com/blog/devops-solves-business-problems-gene-kims-top-aha-moments
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

14Share this ebook©2013

Don’t Forget Continuous Delivery Is As Much
a Cultural Shift As I t Is a Technical One

For most teams, the biggest shift is from separate teams dealing with the
writing, testing and deployment of software to a single team that is responsible
for the successful deployment of quality software — albeit one staffed by people
who have specialized skills and are tasked with specific responsibilities.

Developers will still write code, QA people will still manage testing, and IT
operations will still configure and manage infrastructure, but everyone shares
ownership of the software development and release process. That means when
something goes wrong, it’s important to refrain from finger-pointing. Instead,
get the delivery pipeline moving again, and then analyze the situation for a
blameless postmortem afterwards. The object: to treat each such event as an
opportunity to learn and make the process better.

Continuous delivery also requires that testing and IT operations people need to
get involved earlier in the software design process. When all parties talk over
what the new application will need, in terms of validation and infrastructure, the
IT and testing people will be better prepared to test and deploy, and developers
will be better equipped to make sure the code they write is testable and
deployable.

When it comes time to deploy, most errors will have (hopefully) been worked out
already. If there are errors, each deployment should be a small enough change
that it’s easy to roll back to the last known good state.

I ’m Not a PayPal . How Do I Get Star ted?

Continuous delivery is not a thing — it’s a process. Getting to where you’re doing
continuous delivery is itself a process. That’s because it requires changes to
tooling, to processes, and most important to how people work together, and who
works together.

Continuous delivery can be approached in small steps. “The first real step
is to follow your build process and write it all down,” says Eric Shamow,
methodologies lead at Puppet Labs. Then focus on two things:

Which steps take the most time?
Which steps are the most error-prone and/or require the most
human intervention?

These are the steps to automate first. That yields immediate improvement, and
gives you back some time to improve the rest of your process. Choose the next
steps to automate by prioritizing things that are a headache or a time suck,
improving your process incrementally.

”“Continuous delivery is like a muscle.
The more you exercise it, the stronger
it gets.

Eric Shamow, methodologies lead, Puppet Labs

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

15Share this ebook©2013

You can facilitate your early automation steps by:

Putting everything into version control. You’ll find a few popular tools
listed in the next chapter, “The Tools of Continuous Delivery.” If you
need to track something that isn’t in a file, you can log versions manually
for now.
Adding tests to verify your code works. Start with a small group of tests —
don’t try to achieve 100 percent test coverage right away.
Managing servers with configuration management tools (see the next
chapter for a list). Again, start with the servers that are involved with the
steps you want to automate first.
Monitor everything. You can’t improve what you don’t measure. You need
to know how long a step takes to start; how long it takes to complete;
and how many resources it takes. You must continue to monitor and
measure over time, to see if you are improving your process.

Be prepared for the early steps to be messy. “Getting good at writing code that
doesn’t fail is like training a muscle to be strong and flexible,” says Eric. “Initially,
when you start doing continuous delivery, the build breaks all the time. Over
time everyone gets good at writing code that doesn’t break the build, because
they can see what the sources of the breakages are.” And from there, the process
is re-tuned.

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

16Share this ebook©2013

Chapter 4

THE TOOLS OF
CONTINUOUS
DELIVERY

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

17Share this ebook©2013

Chapter 4

The Tools of Continuous Delivery

Continuous delivery is a set of practices, rather than a set of tools. Nevertheless,
assembling the right tools is absolutely necessary to enable both the process
and the communication between developers, test and QA staff, and sysadmins.

The tools that enable continuous delivery have one thing in common: They
treat everything, including IT infrastructure, as code. That makes it possible
to automate every part of the process, and it also means that developers
and IT operations people can communicate in the same language, through
the same tools.

Adopting one tool, and the practices that go with it, can make a significant
improvement in your software delivery process. Once your team is comfortable
with the first tool and the changes in workflow around it, you can move on to
the next.

Software-Defined Infrastructure

Applications shouldn’t be hampered by poor coordination between computing,
network and storage resources. Your infrastructure should be able to respond
automatically to whatever an application needs to run efficiently.

A software-defined approach to infrastructure configuration enables that. If
the application is the reason for configuring and managing infrastructure, it’s
easier to think about configuring all the environments the application will pass
through, including the production environment where it will finally run.

Applications require computing resources, have storage requirements, and will
interact with databases and other services, such as a payment or verification
system. Then there’s network architecture to consider, and the dependencies
between all these elements. You can configure everything to support the
application using tools that treat infrastructure as code — the same tools your
development team is already using.

When you adopt these tools to manage the entire software development
pipeline, everyone working to create the application — devs, test engineers and
sysadmins — can provision the environment the application requires, at each
stage of the process.

The Puppet DSL
and Continuous Delivery

Puppet’s declarative configuration
language supports describing and managing
every environment in your continuous
delivery pipeline.

By using a declarative approach, the Puppet
DSL allows you to define the configuration
of each resource, and it takes account of the
dependencies for you — you don’t have to create
a step-by-step, procedural description.

Once you’ve written that declarative Puppet
code, you can automatically deploy it to every
environment to support the application as it
moves from development to test to production.
Consistency between environments supports the
continuous delivery process.

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

18Share this ebook©2013

Continuous Integrat ion Tools

The most common used CI tools are:
Jenkins
Hudson
Bamboo
CruiseControl

Monitoring

Continuous delivery is about shortening your release cycles, and that means
shortening your test cycles. Doing that is a process of continuous improvement,
so you need to continually monitor your testing environment. That lets you
figure out how to improve it.

Infrastructure monitoring tools enable you to collect and analyze data on your
testing environments, as well as on other parts of the infrastructure. Rather than
talking about whether it feels like testing is going better, monitoring gives the
team data that show whether performance is improving — or deteriorating.

Eric Shamow recommends, “If you’re going to choose one tool to implement
first, this is it. Because you can argue that continuous delivery is about
turning the software release process from an emotion-driven process
to a data-driven process.”

Some well-regarded tools for collecting software release data: Graphite, logstash,
Nagios and Splunk.

Continuous Integrat ion

Continuous integration (CI) is the practice of frequently checking code in with
the main code base, triggering automated tests. It’s a critical part of continuous
delivery. Without continuous integration, you run the risk of discovering that
code that ran fine in its own branch collides with code residing in other
branches, and breaks the application. The huge advantage here is that bugs get
caught while they’re small, and easier to trace and fix.

Though continuous integration is really a practice — not a tool — there are
certainly plenty of tools available to help you implement that practice. A CI
tool regularly checks the version control system for changes to the application,
builds the application and runs automated tests on each build. It also provides
reports on whether each build passed or failed the tests.

The most common used CI tools are Jenkins, Hudson, Bamboo and CruiseControl.

Monitor ing Tools

Some well-regarded tools for collecting
software release data:

Graphite
logstash
Nagios
Splunk

http://jenkins-ci.org/
http://hudson-ci.org/
https://www.atlassian.com/software/bamboo
http://cruisecontrol.sourceforge.net/
http://graphite.wikidot.com/
http://logstash.net/
http://www.nagios.org/
http://www.splunk.com/
http://jenkins-ci.org/
http://hudson-ci.org/
https://www.atlassian.com/software/bamboo
http://cruisecontrol.sourceforge.net/
http://graphite.wikidot.com/
http://logstash.net/
http://www.nagios.org/
http://www.splunk.com/
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

19Share this ebook©2013

Version Control

This is the heart of continuous integration. Development teams use version
control to keep a record of every version of every feature, add-on or other
change to the code base.

Version control is important for everyone on the team, not just developers.
It should be used to keep a record of all tests, scripts, documentation and
configuration files — in fact, everything to do with your software development
work. It should also be used by your operations team to record the configuration
of your infrastructure across different environments.

Once a common version control tool is being used by everyone on the team —
developers, testers and QA people, IT operations people — everyone can see the
state of the build. It becomes the single source of truth for the entire software
workflow. You can also restore anything that you want to roll back, because you
have a version of every piece of the build, including system configurations.

A few of the best known version control tools are Git, Subversion, Perforce
and Mercurial.

Code Review

You need a tool that enables you to step through a proposed change to your
codebase and see what the differences are. It allows you to note which changes
are acceptable, and which are not, before merging the changes with the main
code base.

Some version control tools — Git, for example — include the ability to review
code. So does Stash. Gerrit is a free code review tool that integrates with Git.
And GitHub is, of course, a Git repository hosting service that’s also a well-loved
collaboration environment.

Version Control Tools

A few of the best known
version control tools are:

Git
Subversion
Perforce
Mercurial

http://git-scm.com/
http://subversion.apache.org/
http://www.perforce.com/
http://mercurial.selenic.com/
https://www.atlassian.com/software/stash/overview
https://code.google.com/p/gerrit/
http://git-scm.com/
http://subversion.apache.org/
http://www.perforce.com/
http://mercurial.selenic.com/
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

20Share this ebook©2013

Configurat ion Management

Continuous delivery requires that the developer’s environment, the test
environment and the production environment be configured the same way. For
example, a new version of your application may require changes to the settings
on an Apache server. So you have to makes sure those changes are made to the
test and QA environments, to make the tests meaningful.

In many technical teams, different people (or groups of people) take
responsibility for configuring development machines, test and QA servers, and
production servers. If these different teams are all using different tools, or hand-
configuring their machines, the development, test and production environments
won’t be consistent.

Inconsistent environments make it very difficult to determine why an application
breaks when it’s promoted from one environment to the next. Is it because
there’s a fault in the source code itself? Or is it because each environment is
configured differently? Now it’s really hard to figure out where the flaw is, and
how to fix it. And because you now have to check so much more — the code
itself, the environments it runs properly in, and the environment that breaks it —
you’re eating up time.

A configuration management tool enables you to keep environments consistent
throughout the software development process, from the developer’s laptop
to production. Furthermore, a good configuration management tool will enforce
configurations, resetting resources to their correct configurations if someone
(or some process) makes a change.

As you test the application at scale — and once you deploy it — there could be
hundreds of servers that must be configured correctly, and you might be doing it
again and again, as you run through iterative changes and tests. A configuration
management tool allows you to set the configuration for every resource the
application will use, and copy those configurations automatically to more
servers, virtual machines, switches, routers and storage servers as you scale.

Configuration management tools based on infrastructure-as-code are a
relatively recent innovation that offer a big benefit: the ability to version-control
configuration of environments along with the application itself. That allows
developers to work in an extremely realistic environment, often identical to the
environment that will manage the application in production. Most importantly,
any changes to an environment can be immediately reflected across all copies
of it, through the use of the version control system — a huge boost for enabling
and supporting continuous delivery.

”
“The bigger the difference between

development and production environments,
the less realistic are the assumptions that
have to be made during development. This
can be difficult to quantify, but it’s a good
bet that if you’re developing on a Windows
machine and deploying to a Solaris cluster,
you are in for some surprises.

Continuous Delivery by Jez Humble and Dave Farley

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

21Share this ebook©2013

Orchestrat ion

Once your environment is configured, you may need to roll out changes, updates
or complete applications in a specific order. That’s orchestration. As with any
task, automating orchestration vastly reduces the possibility of human error, and
makes it possible to scale far beyond what people could do manually.

Dashboards

Continuous delivery isn’t a one-person show. The entire team needs to see, from
moment to moment, if the build is red (broken) or green (working), and what’s
actually been released into each environment.

A dashboard should display the status of your test environment and production
environment. It should show the status of every node, both physical servers and
virtual machines.

Bamboo, Jenkins and Go are all dashboards of choice for many sysadmins.

Remember: I t ’s Al l about Software Quality,
Faster Cycles , and People.

Despite the list of tools above, continuous delivery really isn’t a toolset:
It’s a process that you implement via tools. The purpose of continuous delivery
is to deliver less buggy software, and faster, so people can start using it.

Most important of all, continuous delivery is about ongoing collaboration
between the people who are part of the software creation and release process.
It’s about getting everyone to feel like they’re on the same team; that their
concerns about process and quality are being heard; and to free people from
spending nights and weekends at work, when they could be relaxing with family
and friends.

Dashboard Tools

A few of the best known
dashboard tools are:

Bamboo
Jenkins
Go

https://www.atlassian.com/software/bamboo
http://jenkins-ci.org/
http://www.thoughtworks.com/products/go-continuous-delivery
https://www.atlassian.com/software/bamboo
http://jenkins-ci.org/
http://www.thoughtworks.com/products/go-continuous-delivery
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

22Share this ebook©2013

SUMMING UP
CONTINUOUS
DELIVERY

http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

23Share this ebook©2013

Summing Up Continuous Delivery

Continuous Delivery Is…

Incremental
You can implement continuous delivery practices just a step at a time and still
get great benefits.

Automated
By making successful processes repeatable, you can make changes more quickly
and safely, with less likelihood of error.

Fast
By making frequent releases of smaller changes, you can isolate and fix
problems more quickly or roll back to a previous working state more easily.

You’re Doing Continuous Delivery When. . .

you can perform push-button deployments of any version
of the software to any environment on demand

you’re leveraging automation, making frequent releases, testing at every
stage of the process, and using a pull-based architecture that permits
only successful releases to move to the next stage

you work together as a single team, with everyone - developer, QA
engineer and sysadmin - responsible for delivering quality code

”“Mistakes happen. We find them, fix them and move on. The important
thing is to learn something from the process, and never make the
mistake again in the future.

Michael Rembetsy, director of technical operations at Etsy

http://www.cio.com/article/703190/Continuous_Deployment_Done_In_Unique_Fashion_at_Etsy.com
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

24Share this ebook©2013

Puppet Enterprise:
Automate and Make Your Life Better

At Puppet Labs, we make software that makes peoples’ lives easier. We believe
sysadmins, developers and QA engineers are happier and more productive when
they work together as a single team to create software they’re proud of.

Puppet Enterprise, our flagship product, enables continuous delivery. With its
declarative language that tells compute, network and storage devices what
they should look like — not how to get there — Puppet Enterprise facilitates
collaboration between the people who share responsibility for creating great
software.

Download and try it out on 10 nodes today - for free.

http://puppetlabs.com/dashboard
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16
http://puppetlabs.com/dashboard

25Share this ebook©2013

Desktop Workflows
for Developers

Developers can benefit from extending automation
to their own desktop workflows. Here are two tools
that can help with that process.

Vagrant
Automates the management and provisioning
of development and test environments. It
provides a way for sysadmins to share production
configurations with developers in a desktop virtual
environment, using a tool that’s simple enough
to manage just that desktop use case. Developers
and QA people can also use it easily, eliminating
a well-known hassle for sysadmins: trying to get dev
and QA up and running on VM solutions, and then
keeping them in sync with production.

Bonus: Vagrant lets you test your environment even
if your organization doesn’t have the resources to
set up a full-fledged QA environment.

Boxen
A tool available from GitHub, Boxen allows you
to install on your local workstation — usually
with a single command — tools like the “hub”
Ruby Gem that interacts with your continuous
delivery and continuous integration workflows.
Similar command-line tools for Jenkins, Vagrant,
Amazon Web Services and orchestration tools like
MCollective are easy to install with Boxen, too.

Puppet Modules

You’ll find more than 1,700 modules on the
Puppet Forge to help you automate just about
anything. These are written by both Puppet Labs
employees and Puppet community members.
Many are helpful for continuous delivery, and
a few are highlighted here.

puppetlabs/mcollective
Installs, configures and manages the MCollective
agents, clients and middleware of an MCollective
cluster across a range of operating systems
and Linux distributions. MCollective powers the
orchestration engine in Puppet Enterprise.

fiddyspence/mconotify
A report processor that sends MCollective RPC
messages to nodes or classes of nodes to trigger
configuration updates for dependent resource sets.

rtyler/jenkins
A plugin for managing the Jenkins continuous
integration tool.

maestrodev/maestro_nodes
A plugin for deploying and configuring
remote nodes.

maestrodev/maven
Allows you to download artifacts from
a Maven repository.

Educational Resources

Git Workflow and Puppet Environments
Puppet breaks infrastructure configuration into
environments, allowing you to use a single Puppet
master to serve multiple isolated configurations,
using Git.

Test-Driven Infrastructure Development
Tomas Doran of TIM Group talks about how his team
developed end-to-end testing of its infrastructure to
facilitate continuous deployment.

Bootstrapping Puppet and Application Deployment
Robert de Macedo Soares of BusinessWire discusses
solutions to issues people can face when they
first launch Puppet across existing heterogeneous
servers, based on his team’s experience.

Testing for Ops: Going Beyond the Manifest
Christopher Webber of Demand Media talks about
the value of rspec-puppet for people from an
operations background, including how to test for
baseline security, differences between development
and production environments, and more.

What Is this Continuous Delivery Thing Anyway?
Eric Shamow, methodologies lead at Puppet Labs,
offers an introduction to continuous delivery with
a focus on Puppet and operations teams. Learn what
you can do with Puppet to enable an environment
that encourages rapid iteration.

Releasing Puppet:
Automating Packaging for Many Platforms
Moses Mendoza and Matthaus Owens, who both
work in release engineering at Puppet Labs, show
how Puppet Labs has fully automated diverse,
difficult packaging workflows.

Appendix

Resources for Continuous Delivery

There’s a wealth of other resources available for anyone who wants to implement continuous delivery — or elements of it — in the
workplace. Here are a few additional tools and educational resources that can help.

http://www.vagrantup.com/
http://boxen.github.com/
http://forge.puppetlabs.com/
http://forge.puppetlabs.com/puppetlabs/mcollective
http://forge.puppetlabs.com/fiddyspence/mconotify
http://forge.puppetlabs.com/rtyler/jenkins
http://forge.puppetlabs.com/maestrodev/maestro_nodes
http://forge.puppetlabs.com/maestrodev/maven
http://puppetlabs.com/blog/git-workflow-and-puppet-environments
http://puppetlabs.com/presentations/test-driven-infrastructure-development
http://puppetlabs.com/presentations/bootstrapping-puppet-and-application-deployment
http://puppetlabs.com/presentations/testing-ops-going-beyond-manifest
http://puppetlabs.com/presentations/what-continuous-delivery-thing-anyway
http://puppetlabs.com/presentations/releasing-puppet-automating-packaging-many-platforms-or-make-all-things
http://puppetlabs.com/presentations/releasing-puppet-automating-packaging-many-platforms-or-make-all-things
http://hrefshare.com/74a
http://hrefshare.com/eb4
http://hrefshare.com/b2c8
http://hrefshare.com/ba16

	Table of Content
	Intro
	Chatper1
	Chapter2
	Chapter3
	Chapter4
	Summary
	PE
	Appendix

	Button 186:
	Button 188:
	Button 189:
	Button 190:
	Button 191:
	Button 192:
	Button 193:
	Button 194:
	Button 195:
	Button 196:
	Button 197:
	Button 198:
	Button 171:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off
	Page 129: Off
	Page 1310: Off
	Page 1411: Off
	Page 1512: Off
	Page 1613: Off
	Page 1714: Off
	Page 1815: Off
	Page 1916: Off
	Page 2017: Off
	Page 2118: Off
	Page 2219: Off
	Page 2320: Off
	Page 2421: Off
	Page 2522: Off

	Button 172:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off
	Page 129: Off
	Page 1310: Off
	Page 1411: Off
	Page 1512: Off
	Page 1613: Off
	Page 1714: Off
	Page 1815: Off
	Page 1916: Off
	Page 2017: Off
	Page 2118: Off
	Page 2219: Off
	Page 2320: Off
	Page 2421: Off
	Page 2522: Off

	Button 173:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off
	Page 129: Off
	Page 1310: Off
	Page 1411: Off
	Page 1512: Off
	Page 1613: Off
	Page 1714: Off
	Page 1815: Off
	Page 1916: Off
	Page 2017: Off
	Page 2118: Off
	Page 2219: Off
	Page 2320: Off
	Page 2421: Off
	Page 2522: Off

	Button 174:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off
	Page 129: Off
	Page 1310: Off
	Page 1411: Off
	Page 1512: Off
	Page 1613: Off
	Page 1714: Off
	Page 1815: Off
	Page 1916: Off
	Page 2017: Off
	Page 2118: Off
	Page 2219: Off
	Page 2320: Off
	Page 2421: Off
	Page 2522: Off

	Button 177:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off
	Page 129: Off
	Page 1310: Off
	Page 1411: Off
	Page 1512: Off
	Page 1613: Off
	Page 1714: Off
	Page 1815: Off
	Page 1916: Off
	Page 2017: Off
	Page 2118: Off
	Page 2219: Off
	Page 2320: Off
	Page 2421: Off
	Page 2522: Off

	Button 152:

